1 Some water is heated electrically in a glass beaker in an experiment to find the specific heat capacity of water. The temperature of the water is taken at regular intervals. The temperature-time graph for this heating is shown in Fig. 4.1. temperature/°C Fig. 4.1 - (a) (i) Use the graph to find - 1. the temperature rise in the first 120s, 2. the temperature rise in the second 120s interval. (ii) Explain why these values are different. [2] | (b) | The experiment is repeated in an insulated beaker. This time, the temperature of the water increases from 20°C to 60°C in 210s. The beaker contains 75g of water. The power of the heater is 60W. Calculate the specific heat capacity of water. | | |-----|--|-----| | | specific heat capacity =[| [4] | | (c) | In order to measure the temperature during the heating, a thermocouple is used. Draw a labelled diagram of a thermocouple connected to measure temperature. | | | | | | | | | | | | | [2] | | | [Total : 8] | | | | | | **2** Fig. 4.1 shows apparatus that a student uses to make an estimate of the specific heat capacity of iron. Fig. 4.1 | (a) | The power of the heater is known. State the four readings the student must take to find | |-----|---| | | the specific heat capacity of iron. | | 1. |
 | |----|---------| | | | | 2. |
 | | | | | 3. | | | | | | 4. |
[3] | **(b)** Write down an equation, in words or in symbols, that could be used to work out the specific heat capacity of iron from the readings in **(a)**. | (c) (i) Explain why the | e value obtained with this apparatus is higher than the actual value. | |-----------------------------------|---| | | [1 | | (ii) State one addivatue obtained | tion to the apparatus that would help to improve the accuracy of the | | | [1 | | | [Total : 7] | 3 Fig. 4.1 shows apparatus that could be used to measure the specific latent heat of ice. Fig. 4.1 | (a) | Describe how you would use the apparatus. You may assume that ice at 0 °C and a stopwatch are available. State all the readings that would be needed at each stage. | |-----|--| | | | | | | | | | | | | | | [4] | | (b) | In an experiment, 120 g of ice at 0 °C is to be melted. The specific latent heat of ice is 340 J/g. Assume that all the energy from the heater will be used to melt the ice. | | | Calculate the expected time for which the 60 W heater is switched on. | | | | | | ovported time — [7] | | | expected time = [2] | | (c) | Whe | When the experiment is carried out, the ice melts in slightly less time than the expected me. | | |-----|------|--|--| | | (i) | State one reason why this happens. | | | | | [1] | | | | (ii) | Suggest one modification to the experiment that would reduce the difference between the experimental time and the expected time. | | | | | [1] | | **4 (a)** Fig. 4.1 shows a simple type of thermocouple that has been calibrated to measure temperature. Fig. 4.1 | (i) | Describe how the thermocouple could be used to measure the temperature of a beaker of hot water. | |------|---| | | | | | | | (ii) | State two situations where a thermocouple would be a good choice of thermometer to measure temperature. | | | 1 | | | 2 | | | [4] | **(b)** A mercury-in-glass thermometer is placed in an insulated beaker of water at 60 °C. The water is heated at a constant rate. The temperature of the water is measured and recorded on the graph shown in Fig. 4.2. Fig. 4.2 State the effect of the heat supplied | (i) | during the period 0 to 5 minutes, | |-----|-----------------------------------| | | | | | | | (ii) | during the period 10 to 15 minutes. | |------|-------------------------------------| | | | | | | [2] [Total : 6] **5** Fig. 5.1 shows a thermocouple set up to measure the temperature at a point on a solar panel. Fig. 5.1 | (a) | X is a copper wire. | | | | | |-----|---------------------|--|--------|--|--| | | (i) | Suggest a material for Y. | | | | | | | | | | | | | (ii) | Name the component Z. | | | | | | | |
2] | | | | (b) | Exp | olain how a thermocouple is used to measure temperature. | - | | | | | | | ••• | | | | | | | | | | | | | | 3] | | | | (c) | | periment shows that the temperature of the surface depends upon the type ace used. | of | | | | | Des | scribe the nature of the surface that will cause the temperature to rise most. | | | | | | | | | | | | | | | 1] | | | | 6 | (a) | Equ | al volumes of nitrogen, water and copper at 20 °C are heated to 50 °C. | |---|-----|------|---| | | | (i) | Which one of the three will have a much greater expansion than the other two? | | | | (ii) | Explain your answer in terms of the way the molecules are arranged in the three substances. | | | | | | | | | | [3] | | | (b) | Fig. | 5.1 shows a thermometer with a range of -10 °C to 50 °C. -10 °C 50 °C | | | | | Fig. 5.1 | | | | Ехр | lain what is meant by | | | | (i) | the sensitivity of a thermometer, | | | | | | | | | (ii) | the linearity of a thermometer. | | | | | | | | | | [2] | | A thermocouple is used to measure the temperature | of the inner wall of a pottery kill. | |--|---------------------------------------| | (a) In the space below, draw a labelled diagram of this purpose. | , , | | (b) Describe(i) how you would read the temperature of the | wall from the thermocouple, | | | | | | [2] | | (c) State two conditions in which a thermocou measurement. | uple is very suitable for temperature | | (a) | In an experiment to find the specific latent heat of water, the following readings were taken. | | |-----|--|---| | | m_1 mass of water at 100 °C, before boiling st m_2 mass of water at 100 °C, after boiling finis V voltage across the heater I current through the heater t time that the heater was supplying energy | shes 80 g
12 V
2.0 A | | | (i) Using the symbols above, write down to value of the specific latent heat <i>L</i> of water than the control of the symbols above, write down to value of the specific latent heat <i>L</i> of water than the control of the symbols above, write down to value of the specific latent heat <i>L</i> of water than the symbols above, write down to value of the specific latent heat <i>L</i> of water than the symbols above, write down to value of the specific latent heat <i>L</i> of water than the symbols above. | he equation that must be used to find the er. | | | (ii) Use the equation to calculate the spec
above. | ific latent heat of water from the readings | | | sp | ecific latent heat =[4] | | (b) | Explain, in terms of the energy of molecules, high value. | why the specific latent heat of water has a | | | | | | | | [2] | | | | |